Copied to
clipboard

G = C2×C3211SD16order 288 = 25·32

Direct product of C2 and C3211SD16

direct product, metabelian, supersoluble, monomial

Aliases: C2×C3211SD16, C62.133D4, (C6×Q8)⋊5S3, (C3×Q8)⋊16D6, (C3×C6)⋊11SD16, C63(Q82S3), (C3×C12).101D4, (C2×C12).156D6, C3220(C2×SD16), C12.60(C3⋊D4), C4.8(C327D4), (C6×C12).147C22, (C3×C12).104C23, C12.100(C22×S3), C324C824C22, (Q8×C32)⋊15C22, C12⋊S3.29C22, C22.23(C327D4), (Q8×C3×C6)⋊5C2, Q84(C2×C3⋊S3), (C2×Q8)⋊3(C3⋊S3), C34(C2×Q82S3), (C3×C6).287(C2×D4), C6.128(C2×C3⋊D4), C4.14(C22×C3⋊S3), (C2×C324C8)⋊11C2, (C2×C12⋊S3).15C2, C2.17(C2×C327D4), (C2×C6).101(C3⋊D4), (C2×C4).52(C2×C3⋊S3), SmallGroup(288,798)

Series: Derived Chief Lower central Upper central

C1C3×C12 — C2×C3211SD16
C1C3C32C3×C6C3×C12C12⋊S3C2×C12⋊S3 — C2×C3211SD16
C32C3×C6C3×C12 — C2×C3211SD16
C1C22C2×C4C2×Q8

Generators and relations for C2×C3211SD16
 G = < a,b,c,d,e | a2=b3=c3=d8=e2=1, ab=ba, ac=ca, ad=da, ae=ea, bc=cb, dbd-1=ebe=b-1, dcd-1=ece=c-1, ede=d3 >

Subgroups: 884 in 204 conjugacy classes, 77 normal (17 characteristic)
C1, C2, C2, C2, C3, C4, C4, C22, C22, S3, C6, C8, C2×C4, C2×C4, D4, Q8, Q8, C23, C32, C12, C12, D6, C2×C6, C2×C8, SD16, C2×D4, C2×Q8, C3⋊S3, C3×C6, C3×C6, C3⋊C8, D12, C2×C12, C2×C12, C3×Q8, C3×Q8, C22×S3, C2×SD16, C3×C12, C3×C12, C2×C3⋊S3, C62, C2×C3⋊C8, Q82S3, C2×D12, C6×Q8, C324C8, C12⋊S3, C12⋊S3, C6×C12, C6×C12, Q8×C32, Q8×C32, C22×C3⋊S3, C2×Q82S3, C2×C324C8, C3211SD16, C2×C12⋊S3, Q8×C3×C6, C2×C3211SD16
Quotients: C1, C2, C22, S3, D4, C23, D6, SD16, C2×D4, C3⋊S3, C3⋊D4, C22×S3, C2×SD16, C2×C3⋊S3, Q82S3, C2×C3⋊D4, C327D4, C22×C3⋊S3, C2×Q82S3, C3211SD16, C2×C327D4, C2×C3211SD16

Smallest permutation representation of C2×C3211SD16
On 144 points
Generators in S144
(1 44)(2 45)(3 46)(4 47)(5 48)(6 41)(7 42)(8 43)(9 76)(10 77)(11 78)(12 79)(13 80)(14 73)(15 74)(16 75)(17 70)(18 71)(19 72)(20 65)(21 66)(22 67)(23 68)(24 69)(25 144)(26 137)(27 138)(28 139)(29 140)(30 141)(31 142)(32 143)(33 50)(34 51)(35 52)(36 53)(37 54)(38 55)(39 56)(40 49)(57 103)(58 104)(59 97)(60 98)(61 99)(62 100)(63 101)(64 102)(81 94)(82 95)(83 96)(84 89)(85 90)(86 91)(87 92)(88 93)(105 115)(106 116)(107 117)(108 118)(109 119)(110 120)(111 113)(112 114)(121 135)(122 136)(123 129)(124 130)(125 131)(126 132)(127 133)(128 134)
(1 29 64)(2 57 30)(3 31 58)(4 59 32)(5 25 60)(6 61 26)(7 27 62)(8 63 28)(9 52 129)(10 130 53)(11 54 131)(12 132 55)(13 56 133)(14 134 49)(15 50 135)(16 136 51)(17 120 92)(18 93 113)(19 114 94)(20 95 115)(21 116 96)(22 89 117)(23 118 90)(24 91 119)(33 121 74)(34 75 122)(35 123 76)(36 77 124)(37 125 78)(38 79 126)(39 127 80)(40 73 128)(41 99 137)(42 138 100)(43 101 139)(44 140 102)(45 103 141)(46 142 104)(47 97 143)(48 144 98)(65 82 105)(66 106 83)(67 84 107)(68 108 85)(69 86 109)(70 110 87)(71 88 111)(72 112 81)
(1 22 15)(2 16 23)(3 24 9)(4 10 17)(5 18 11)(6 12 19)(7 20 13)(8 14 21)(25 93 54)(26 55 94)(27 95 56)(28 49 96)(29 89 50)(30 51 90)(31 91 52)(32 53 92)(33 140 84)(34 85 141)(35 142 86)(36 87 143)(37 144 88)(38 81 137)(39 138 82)(40 83 139)(41 79 72)(42 65 80)(43 73 66)(44 67 74)(45 75 68)(46 69 76)(47 77 70)(48 71 78)(57 136 118)(58 119 129)(59 130 120)(60 113 131)(61 132 114)(62 115 133)(63 134 116)(64 117 135)(97 124 110)(98 111 125)(99 126 112)(100 105 127)(101 128 106)(102 107 121)(103 122 108)(104 109 123)
(1 2 3 4 5 6 7 8)(9 10 11 12 13 14 15 16)(17 18 19 20 21 22 23 24)(25 26 27 28 29 30 31 32)(33 34 35 36 37 38 39 40)(41 42 43 44 45 46 47 48)(49 50 51 52 53 54 55 56)(57 58 59 60 61 62 63 64)(65 66 67 68 69 70 71 72)(73 74 75 76 77 78 79 80)(81 82 83 84 85 86 87 88)(89 90 91 92 93 94 95 96)(97 98 99 100 101 102 103 104)(105 106 107 108 109 110 111 112)(113 114 115 116 117 118 119 120)(121 122 123 124 125 126 127 128)(129 130 131 132 133 134 135 136)(137 138 139 140 141 142 143 144)
(2 4)(3 7)(6 8)(9 20)(10 23)(11 18)(12 21)(13 24)(14 19)(15 22)(16 17)(25 60)(26 63)(27 58)(28 61)(29 64)(30 59)(31 62)(32 57)(33 107)(34 110)(35 105)(36 108)(37 111)(38 106)(39 109)(40 112)(41 43)(42 46)(45 47)(49 114)(50 117)(51 120)(52 115)(53 118)(54 113)(55 116)(56 119)(65 76)(66 79)(67 74)(68 77)(69 80)(70 75)(71 78)(72 73)(81 128)(82 123)(83 126)(84 121)(85 124)(86 127)(87 122)(88 125)(89 135)(90 130)(91 133)(92 136)(93 131)(94 134)(95 129)(96 132)(97 141)(98 144)(99 139)(100 142)(101 137)(102 140)(103 143)(104 138)

G:=sub<Sym(144)| (1,44)(2,45)(3,46)(4,47)(5,48)(6,41)(7,42)(8,43)(9,76)(10,77)(11,78)(12,79)(13,80)(14,73)(15,74)(16,75)(17,70)(18,71)(19,72)(20,65)(21,66)(22,67)(23,68)(24,69)(25,144)(26,137)(27,138)(28,139)(29,140)(30,141)(31,142)(32,143)(33,50)(34,51)(35,52)(36,53)(37,54)(38,55)(39,56)(40,49)(57,103)(58,104)(59,97)(60,98)(61,99)(62,100)(63,101)(64,102)(81,94)(82,95)(83,96)(84,89)(85,90)(86,91)(87,92)(88,93)(105,115)(106,116)(107,117)(108,118)(109,119)(110,120)(111,113)(112,114)(121,135)(122,136)(123,129)(124,130)(125,131)(126,132)(127,133)(128,134), (1,29,64)(2,57,30)(3,31,58)(4,59,32)(5,25,60)(6,61,26)(7,27,62)(8,63,28)(9,52,129)(10,130,53)(11,54,131)(12,132,55)(13,56,133)(14,134,49)(15,50,135)(16,136,51)(17,120,92)(18,93,113)(19,114,94)(20,95,115)(21,116,96)(22,89,117)(23,118,90)(24,91,119)(33,121,74)(34,75,122)(35,123,76)(36,77,124)(37,125,78)(38,79,126)(39,127,80)(40,73,128)(41,99,137)(42,138,100)(43,101,139)(44,140,102)(45,103,141)(46,142,104)(47,97,143)(48,144,98)(65,82,105)(66,106,83)(67,84,107)(68,108,85)(69,86,109)(70,110,87)(71,88,111)(72,112,81), (1,22,15)(2,16,23)(3,24,9)(4,10,17)(5,18,11)(6,12,19)(7,20,13)(8,14,21)(25,93,54)(26,55,94)(27,95,56)(28,49,96)(29,89,50)(30,51,90)(31,91,52)(32,53,92)(33,140,84)(34,85,141)(35,142,86)(36,87,143)(37,144,88)(38,81,137)(39,138,82)(40,83,139)(41,79,72)(42,65,80)(43,73,66)(44,67,74)(45,75,68)(46,69,76)(47,77,70)(48,71,78)(57,136,118)(58,119,129)(59,130,120)(60,113,131)(61,132,114)(62,115,133)(63,134,116)(64,117,135)(97,124,110)(98,111,125)(99,126,112)(100,105,127)(101,128,106)(102,107,121)(103,122,108)(104,109,123), (1,2,3,4,5,6,7,8)(9,10,11,12,13,14,15,16)(17,18,19,20,21,22,23,24)(25,26,27,28,29,30,31,32)(33,34,35,36,37,38,39,40)(41,42,43,44,45,46,47,48)(49,50,51,52,53,54,55,56)(57,58,59,60,61,62,63,64)(65,66,67,68,69,70,71,72)(73,74,75,76,77,78,79,80)(81,82,83,84,85,86,87,88)(89,90,91,92,93,94,95,96)(97,98,99,100,101,102,103,104)(105,106,107,108,109,110,111,112)(113,114,115,116,117,118,119,120)(121,122,123,124,125,126,127,128)(129,130,131,132,133,134,135,136)(137,138,139,140,141,142,143,144), (2,4)(3,7)(6,8)(9,20)(10,23)(11,18)(12,21)(13,24)(14,19)(15,22)(16,17)(25,60)(26,63)(27,58)(28,61)(29,64)(30,59)(31,62)(32,57)(33,107)(34,110)(35,105)(36,108)(37,111)(38,106)(39,109)(40,112)(41,43)(42,46)(45,47)(49,114)(50,117)(51,120)(52,115)(53,118)(54,113)(55,116)(56,119)(65,76)(66,79)(67,74)(68,77)(69,80)(70,75)(71,78)(72,73)(81,128)(82,123)(83,126)(84,121)(85,124)(86,127)(87,122)(88,125)(89,135)(90,130)(91,133)(92,136)(93,131)(94,134)(95,129)(96,132)(97,141)(98,144)(99,139)(100,142)(101,137)(102,140)(103,143)(104,138)>;

G:=Group( (1,44)(2,45)(3,46)(4,47)(5,48)(6,41)(7,42)(8,43)(9,76)(10,77)(11,78)(12,79)(13,80)(14,73)(15,74)(16,75)(17,70)(18,71)(19,72)(20,65)(21,66)(22,67)(23,68)(24,69)(25,144)(26,137)(27,138)(28,139)(29,140)(30,141)(31,142)(32,143)(33,50)(34,51)(35,52)(36,53)(37,54)(38,55)(39,56)(40,49)(57,103)(58,104)(59,97)(60,98)(61,99)(62,100)(63,101)(64,102)(81,94)(82,95)(83,96)(84,89)(85,90)(86,91)(87,92)(88,93)(105,115)(106,116)(107,117)(108,118)(109,119)(110,120)(111,113)(112,114)(121,135)(122,136)(123,129)(124,130)(125,131)(126,132)(127,133)(128,134), (1,29,64)(2,57,30)(3,31,58)(4,59,32)(5,25,60)(6,61,26)(7,27,62)(8,63,28)(9,52,129)(10,130,53)(11,54,131)(12,132,55)(13,56,133)(14,134,49)(15,50,135)(16,136,51)(17,120,92)(18,93,113)(19,114,94)(20,95,115)(21,116,96)(22,89,117)(23,118,90)(24,91,119)(33,121,74)(34,75,122)(35,123,76)(36,77,124)(37,125,78)(38,79,126)(39,127,80)(40,73,128)(41,99,137)(42,138,100)(43,101,139)(44,140,102)(45,103,141)(46,142,104)(47,97,143)(48,144,98)(65,82,105)(66,106,83)(67,84,107)(68,108,85)(69,86,109)(70,110,87)(71,88,111)(72,112,81), (1,22,15)(2,16,23)(3,24,9)(4,10,17)(5,18,11)(6,12,19)(7,20,13)(8,14,21)(25,93,54)(26,55,94)(27,95,56)(28,49,96)(29,89,50)(30,51,90)(31,91,52)(32,53,92)(33,140,84)(34,85,141)(35,142,86)(36,87,143)(37,144,88)(38,81,137)(39,138,82)(40,83,139)(41,79,72)(42,65,80)(43,73,66)(44,67,74)(45,75,68)(46,69,76)(47,77,70)(48,71,78)(57,136,118)(58,119,129)(59,130,120)(60,113,131)(61,132,114)(62,115,133)(63,134,116)(64,117,135)(97,124,110)(98,111,125)(99,126,112)(100,105,127)(101,128,106)(102,107,121)(103,122,108)(104,109,123), (1,2,3,4,5,6,7,8)(9,10,11,12,13,14,15,16)(17,18,19,20,21,22,23,24)(25,26,27,28,29,30,31,32)(33,34,35,36,37,38,39,40)(41,42,43,44,45,46,47,48)(49,50,51,52,53,54,55,56)(57,58,59,60,61,62,63,64)(65,66,67,68,69,70,71,72)(73,74,75,76,77,78,79,80)(81,82,83,84,85,86,87,88)(89,90,91,92,93,94,95,96)(97,98,99,100,101,102,103,104)(105,106,107,108,109,110,111,112)(113,114,115,116,117,118,119,120)(121,122,123,124,125,126,127,128)(129,130,131,132,133,134,135,136)(137,138,139,140,141,142,143,144), (2,4)(3,7)(6,8)(9,20)(10,23)(11,18)(12,21)(13,24)(14,19)(15,22)(16,17)(25,60)(26,63)(27,58)(28,61)(29,64)(30,59)(31,62)(32,57)(33,107)(34,110)(35,105)(36,108)(37,111)(38,106)(39,109)(40,112)(41,43)(42,46)(45,47)(49,114)(50,117)(51,120)(52,115)(53,118)(54,113)(55,116)(56,119)(65,76)(66,79)(67,74)(68,77)(69,80)(70,75)(71,78)(72,73)(81,128)(82,123)(83,126)(84,121)(85,124)(86,127)(87,122)(88,125)(89,135)(90,130)(91,133)(92,136)(93,131)(94,134)(95,129)(96,132)(97,141)(98,144)(99,139)(100,142)(101,137)(102,140)(103,143)(104,138) );

G=PermutationGroup([[(1,44),(2,45),(3,46),(4,47),(5,48),(6,41),(7,42),(8,43),(9,76),(10,77),(11,78),(12,79),(13,80),(14,73),(15,74),(16,75),(17,70),(18,71),(19,72),(20,65),(21,66),(22,67),(23,68),(24,69),(25,144),(26,137),(27,138),(28,139),(29,140),(30,141),(31,142),(32,143),(33,50),(34,51),(35,52),(36,53),(37,54),(38,55),(39,56),(40,49),(57,103),(58,104),(59,97),(60,98),(61,99),(62,100),(63,101),(64,102),(81,94),(82,95),(83,96),(84,89),(85,90),(86,91),(87,92),(88,93),(105,115),(106,116),(107,117),(108,118),(109,119),(110,120),(111,113),(112,114),(121,135),(122,136),(123,129),(124,130),(125,131),(126,132),(127,133),(128,134)], [(1,29,64),(2,57,30),(3,31,58),(4,59,32),(5,25,60),(6,61,26),(7,27,62),(8,63,28),(9,52,129),(10,130,53),(11,54,131),(12,132,55),(13,56,133),(14,134,49),(15,50,135),(16,136,51),(17,120,92),(18,93,113),(19,114,94),(20,95,115),(21,116,96),(22,89,117),(23,118,90),(24,91,119),(33,121,74),(34,75,122),(35,123,76),(36,77,124),(37,125,78),(38,79,126),(39,127,80),(40,73,128),(41,99,137),(42,138,100),(43,101,139),(44,140,102),(45,103,141),(46,142,104),(47,97,143),(48,144,98),(65,82,105),(66,106,83),(67,84,107),(68,108,85),(69,86,109),(70,110,87),(71,88,111),(72,112,81)], [(1,22,15),(2,16,23),(3,24,9),(4,10,17),(5,18,11),(6,12,19),(7,20,13),(8,14,21),(25,93,54),(26,55,94),(27,95,56),(28,49,96),(29,89,50),(30,51,90),(31,91,52),(32,53,92),(33,140,84),(34,85,141),(35,142,86),(36,87,143),(37,144,88),(38,81,137),(39,138,82),(40,83,139),(41,79,72),(42,65,80),(43,73,66),(44,67,74),(45,75,68),(46,69,76),(47,77,70),(48,71,78),(57,136,118),(58,119,129),(59,130,120),(60,113,131),(61,132,114),(62,115,133),(63,134,116),(64,117,135),(97,124,110),(98,111,125),(99,126,112),(100,105,127),(101,128,106),(102,107,121),(103,122,108),(104,109,123)], [(1,2,3,4,5,6,7,8),(9,10,11,12,13,14,15,16),(17,18,19,20,21,22,23,24),(25,26,27,28,29,30,31,32),(33,34,35,36,37,38,39,40),(41,42,43,44,45,46,47,48),(49,50,51,52,53,54,55,56),(57,58,59,60,61,62,63,64),(65,66,67,68,69,70,71,72),(73,74,75,76,77,78,79,80),(81,82,83,84,85,86,87,88),(89,90,91,92,93,94,95,96),(97,98,99,100,101,102,103,104),(105,106,107,108,109,110,111,112),(113,114,115,116,117,118,119,120),(121,122,123,124,125,126,127,128),(129,130,131,132,133,134,135,136),(137,138,139,140,141,142,143,144)], [(2,4),(3,7),(6,8),(9,20),(10,23),(11,18),(12,21),(13,24),(14,19),(15,22),(16,17),(25,60),(26,63),(27,58),(28,61),(29,64),(30,59),(31,62),(32,57),(33,107),(34,110),(35,105),(36,108),(37,111),(38,106),(39,109),(40,112),(41,43),(42,46),(45,47),(49,114),(50,117),(51,120),(52,115),(53,118),(54,113),(55,116),(56,119),(65,76),(66,79),(67,74),(68,77),(69,80),(70,75),(71,78),(72,73),(81,128),(82,123),(83,126),(84,121),(85,124),(86,127),(87,122),(88,125),(89,135),(90,130),(91,133),(92,136),(93,131),(94,134),(95,129),(96,132),(97,141),(98,144),(99,139),(100,142),(101,137),(102,140),(103,143),(104,138)]])

54 conjugacy classes

class 1 2A2B2C2D2E3A3B3C3D4A4B4C4D6A···6L8A8B8C8D12A···12X
order122222333344446···6888812···12
size11113636222222442···2181818184···4

54 irreducible representations

dim11111222222224
type+++++++++++
imageC1C2C2C2C2S3D4D4D6D6SD16C3⋊D4C3⋊D4Q82S3
kernelC2×C3211SD16C2×C324C8C3211SD16C2×C12⋊S3Q8×C3×C6C6×Q8C3×C12C62C2×C12C3×Q8C3×C6C12C2×C6C6
# reps11411411484888

Matrix representation of C2×C3211SD16 in GL6(𝔽73)

7200000
0720000
001000
000100
000010
000001
,
7210000
7200000
00727200
001000
000010
000001
,
7210000
7200000
000100
00727200
000010
000001
,
010000
100000
0072000
001100
00006767
0000667
,
0720000
7200000
001000
00727200
000010
0000072

G:=sub<GL(6,GF(73))| [72,0,0,0,0,0,0,72,0,0,0,0,0,0,1,0,0,0,0,0,0,1,0,0,0,0,0,0,1,0,0,0,0,0,0,1],[72,72,0,0,0,0,1,0,0,0,0,0,0,0,72,1,0,0,0,0,72,0,0,0,0,0,0,0,1,0,0,0,0,0,0,1],[72,72,0,0,0,0,1,0,0,0,0,0,0,0,0,72,0,0,0,0,1,72,0,0,0,0,0,0,1,0,0,0,0,0,0,1],[0,1,0,0,0,0,1,0,0,0,0,0,0,0,72,1,0,0,0,0,0,1,0,0,0,0,0,0,67,6,0,0,0,0,67,67],[0,72,0,0,0,0,72,0,0,0,0,0,0,0,1,72,0,0,0,0,0,72,0,0,0,0,0,0,1,0,0,0,0,0,0,72] >;

C2×C3211SD16 in GAP, Magma, Sage, TeX

C_2\times C_3^2\rtimes_{11}{\rm SD}_{16}
% in TeX

G:=Group("C2xC3^2:11SD16");
// GroupNames label

G:=SmallGroup(288,798);
// by ID

G=gap.SmallGroup(288,798);
# by ID

G:=PCGroup([7,-2,-2,-2,-2,-2,-3,-3,254,100,675,185,80,2693,9414]);
// Polycyclic

G:=Group<a,b,c,d,e|a^2=b^3=c^3=d^8=e^2=1,a*b=b*a,a*c=c*a,a*d=d*a,a*e=e*a,b*c=c*b,d*b*d^-1=e*b*e=b^-1,d*c*d^-1=e*c*e=c^-1,e*d*e=d^3>;
// generators/relations

׿
×
𝔽